Generalized self-concordant functions: a recipe for Newton-type methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods

We study the smooth structure of convex functions by generalizing a powerful concept so-called self-concordance introduced by Nesterov and Nemirovskii in the early 1990s to a broader class of convex functions, which we call generalized self-concordant functions. This notion allows us to develop a unified framework for designing Newton-type methods to solve convex optimization problems. The prop...

متن کامل

Inexact proximal Newton methods for self-concordant functions

We analyze the proximal Newton method for minimizing a sum of a self-concordant function and a convex function with an inexpensive proximal operator. We present new results on the global and local convergence of the method when inexact search directions are used. The method is illustrated with an application to L1-regularized covariance selection, in which prior constraints on the sparsity patt...

متن کامل

Proximal Newton-Type Methods for Minimizing Composite Functions

We generalize Newton-type methods for minimizing smooth functions to handle a sum of two convex functions: a smooth function and a nonsmooth function with a simple proximal mapping. We show that the resulting proximal Newton-type methods inherit the desirable convergence behavior of Newton-type methods for minimizing smooth functions, even when search directions are computed inexactly. Many pop...

متن کامل

Newton - Type Methods for Stochastic

Stochastic programming is concerned with practical procedures for decision-making under uncertainty , by modelling uncertainties and risks associated with decisions in a form suitable for optimization. The eld is developing rapidly with contributions from many disciplines such as operations research, probability and statistics, and economics. A stochastic linear program with recourse can equiva...

متن کامل

Approximations and generalized Newton methods

We study local convergence of generalized Newton methods for both equations and inclusions by using known and new approximations and regularity properties at the solution. Including Kantorovich-type settings, our goal are statements about all (not only some) Newton sequences with appropriate initial points. Our basic tools are results of [31], [37] and [40], mainly about Newton maps and modifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2018

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-018-1282-4